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Outline

Update on Strengthening International Collaborations.
Overview and goals of a pan CMIP OSSE capability.
Pan CMIP OSSE development update.

— First phase models.
— Vertical interpolation.

Preliminary results from time-series analysis
Summary.
Discussion.
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International Collaborations

Building off PNAS (LBNL), GRL (Umich), and JC (Umich) papers on science value of surface
emissivity measurements, collaboration with UK partners strengthened through a funded
NERC proposal.

Investigation will analyze CIRCCREX data over Greenland and the Denmark Strait and
retrieve far-IR surface emissivity over ice-sheet and ocean.
« Compare with calculations in emissivity database.

Investigation will quantify ice-emissivity feedback within models.
« Preliminary diagnosis using kernel techniques for CESM1.2 is +0.07 W/m?/K (~1/3 ice
albedo feedback), but is state-dependent and will decrease with increasing H,0O.
» Framework for online feedback analysis within CESM has been built.

Investigation will improve understanding of the controls on the polar radiative energy budget.
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Pan CMIP5 OSSE Capability

At Spring 2015 CLARREO meeting, Berkeley group received guidance to
focus on development of a pan CMIP5 OSSE capability in support of
CLARREDO.

*Berkeley group will build off current OSSE, develop model-agnostic OSSE
capability for SW reflectance and LW radiance for CMIP5 and CMIP6
models.

*Goals:
« Determine relationship between model ECS and pan-spectral trends.
« Establish pan-spectral variability across a broad range of climate
models, with an eye towards observational constraint.
« Support Decadal Survey 2017-2027 discussion.
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The CMIP5 climate simulation protocol

“Near-Term” “Long-Term”
(decadal) (century &

ensembles:
AMIP & 20C

hindcasts &
prediction

CORE
(initialized
ocean state)

E-driven

control & 20 C

1%/yr CO, (140 yrs)
abrupt 4XCO, (150 yrs)
fixed SST with 1x &

Taylor et al, 2011

* The Coupled Model Intercomparison Protocol (CMIP5) is the basis for ARS5.
* It includes a new set of simulations for the historical record: 1850 - 2005.
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Progress Report

First Phase Models Overview.
-Data Acquisition.

*Horizontal Interpolation.
*Vertical Interpolation.
*Preliminary Results.

*Execution on NAS facilities.
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First Phase Models

*Model vertical-coordinate idiosyncrasies and data availability from Earth
System Grid and mirroring servers have limited the feasible range of models
for the first phase of the pan CMIP OSSE.

» First phase contains nearly complete range of diagnosed ECS across full ensemble.

Model Name Diagnhosed ECS (°K/2xC02)

CESM1-CAMS5 4.10
CanESM?2 3.69
MIROC-ESM 4.67
MIROCS 2.72
MRI-CGM3 2.60
MRI-ESM1 2.11
inmcm4 2.08
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Data Acquisition

*Thermodynamic and condensate profiles downloaded from Earth System
Grid and its mirrors.

‘MODIS 16-day averages of 7 bands of BRDF and albedo, and 6 bands of
emissivity gathered for 2003-2014.

*Model-agnostic NCL and Matlab routines developed to concatenate fields
into appropriate input files for OSSE.
 If you expect to work with multiple CMIP5 or CMIPG6 fields, these
routines will save you time.
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Boundary Condition Horizontal Interpolation

*Key component of Berkeley’s pan-spectral OSSE is surface boundary
conditions built off of MODIS land-surface products.
*Gridding required for MODIS Climate Modeling Grid (CMG) data for each
model’s horizontal resolution.

« Highly computationally-intensive, but parallelizable.

Black-Sky Visible Land-Surface Albedo January 2090 % Black-Sky Near-Infrared Land-Surface Albedo January 2090
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Vertical Interpolation

*OSSE is now model-agnostic for horizontal resolution, but it is less flexible
for vertical resolution and inflexible on using layers, instead of levels.

Vertical interpolation routines are required for thermodynamic and
condensate profiles.

* Routines need to be mathematically stable and mass-conserving with
no edge cases.

« Central challenge is that enormous heterogeneity used for vertical
grids in climate model output.
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Heterogeneous Vertical Grids Used in CMIP5

Input to OSSE is CMIP5 climate model output assessed in the IPCC ARS.

Difficulties in building complete thermodynamic + cloud profiles for OSSE
from CMIP5:
« Hi-res. thermodynamic profiles mapped to lo-res mandatory pressures
« Hi-res. Cloud data is left on native model grid (differs model to model)

We tried two alternates for interpolating these data to common grid:
 Interpolate clouds to mandatory pressures
 Interpolate thermodynamic profiles back to native model clouds

Both interpolation schemes were strictly mass conservative.

1st scheme failed, 2" scheme worked, and we are using 2"? scheme.
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Vertical Interpolation Interpolating Clouds to
Mandatory Levels -- Reason for Failure

*Thermodynamic profiles = unphysical fill values where surface pressure less
than mandatory level pressure in CMIP5 archive.
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Model Differentiation: MIROC-ESM (4.7°) = MRI-ESM1 (2.1°)

*‘MIROC-ESM and MRI-ESM1 span the range of ECS diagnosed for CMIP5.
Under RCP8.5, perfect broadband measurements starting in 2005 can begin to
exclude one of these models with 15 years’ of data.

MIROC-ESM - MRI-ESM1: OSRC W/m? MIROC-ESM - MRI-ESM1: OSR W/m?
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Model Differentiation: MIROC-ESM (4.7°) = CanESM2 (3.6°)

*‘MIROC-ESM and CanESM2 differ in ECS by 1°.
Under RCP8.5, perfect broadband measurements starting in 2005 can begin

to exclude one of these models with 20-25 years’ of data.
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Model Differentiation: T85 CCSM3 (2.7°) - T31 CCSM3 (2.3°)

*Two resolutions of CCSM3 differ in ECS by 0.4°.
Under RCP8.5, perfect broadband measurements starting in 2005 can begin
to exclude one of these models with 20-25 years’ of data.
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TOA Fluxes

*CMIP-model agnostic OSSE is mechanically working on NAS systems.
*Preliminary output of fluxes from CAM RT and MODTRAN show agreement
in LW within 3 W/m? (clear-sky) and 10 W/m? (all-sky).

*More debugging on the timing system is still needed for the SW.

Pan-CMIP OSSE: CESM OLR 01/2005 W’mszo Pan-CMIP OSSE: CESM LW CRE 01/2005 Wim?
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Benchmark Testing

*Multiple scattering line-by-line radiative transfer calculations (LBLRTM+CHARTS)
coupled to a database of ice cloud optical properties enable versatile spectral flux

calculations.

‘NERSC and NAS resources take advantage of embarrassingly parallel nature of

these calculations. Burst-buffer will address disk-limitations that hinder scaling.
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Additional Opportunities with a Pan-CMIP OSSE

*The pan-CMIP OSSE produces radiometrically-rigorous radiative transfer
calculations across the CMIP, thereby enabling additional science.

« Realistic evaluation of the spatial distribution of radiative forcing from
greenhouse gases and aerosols across a multi-model ensemble in

realistic all-sky conditions.

« Goal is to contribute to more realistic assessment of forcing for IPCC
ARG.

*Recent 1M CPU-hour NASA supercomputing resources award for runs on
Pleiades can enable this science.
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Summary

* International collaboration with Imperial College and UMich partners
yielding exciting science in the far-IR.

« Afully agnostic pan CMIP OSSE is now working.
— Some additional testing and benchmarking still needed.

— Preliminary time-series analysis suggests that CLARREO-like measurements will take
less than 15 years’ to exclude a model where ECS is off by 2.5°K/2xCO.,.

— Some debugging is still necessary in the SW.

— Integration of SW and LW PCRTM will then proceed.

- Additional scientific opportunities enabled by the pan-CMIP OSSE,
especially for IPCC ARG.
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